Elastic cells in uniform flow

Emilian Părău

Diaspora 2023, Timișoara, Aprilie 2023

Joint work with:

Adam Yorkston (former PhD student in MTH)

Mark Blyth (UEA)

Applications

Unmanned aerial vehicles (UAVs)

Figure: A UAV with inflatable elastic wings

• Advantages of UAV with inflatable wings: stowability, robustness,

...and inflatable drones

Advantages

Light, durable (likely to survive ground impact). Waterproof. Portability. Review article

Li et al. (2018) A review of modelling and analysis of morphing wings

Chinese spy baloon

Wikipedia: 2023 Chinese balloon incident

Idealised Model

An elastic cell in a uniform stream

Inviscid, incompressible, irrotational flow

Related work

A two-dimensional bubble in a uniform stream

[From: Vanden-Broeck & Keller (1980)]

Equilibrium states

- Vanden-Broeck & Keller (1980)
- Shankar (1992)
- Tanveer (1996)

Stability

- Nie & Tanveer (1995)

Related work

Static, pressurised elastic cell

Buckled states

- Lévy (1884)
- Carrier (1947)
- Tadjbakhsh & Odeh (1967)
- Flaherty et al. (1972)

[From: Flaherty et al. (1972)]

g

Cell in a uniform stream

Complex potential:

$$rac{dw}{dz} = u - \mathrm{i}v, \qquad z = x + iy \qquad q = |w_z|$$

Far-field condition:

$$w \to Uz$$
 as $z \to \infty$

Bernoulli's equation:

$$ho \operatorname{Re}\left(\frac{\partial w}{\partial t}\right) + \frac{1}{2}\rho q^2 + p = \frac{1}{2}\rho U^2 + p_{\infty}$$

Nondimensional governing equations

• Bernoulli's equation:

$$\operatorname{Re}\left(\frac{\partial w}{\partial t}\right) + \frac{1}{2}(q^2 - \alpha^2) - (\kappa_{ss} + \frac{1}{2}\kappa^3 - \sigma\kappa) - P = 0,$$

where
$$\alpha = \sqrt{\frac{L^3 \rho U^2}{8\pi^3 E_B}}$$
, $P = \frac{8\pi^3 L^3 (p_\infty - p_0)}{E_B}$.

• Inextensibility

$$\eta(s+2\pi)=\eta(s),$$

• Kinematic condition

$$\eta_t \cdot \hat{\mathbf{n}} = \mathbf{u} \cdot \hat{\mathbf{n}}.$$

• Far-field condition:

$$w \to \alpha z$$
 as $|z| \to \infty$

Steady state problem (no flow)

Flaherty *et al.* (1972) $(\alpha = 0)$ $\kappa_{ss} + \frac{1}{2}\kappa^3 - \sigma\kappa + P = 0$

Buckling pressures

$$P = n^2 - 1$$
 $n = 2, 3, 4, \dots$

Contact pressures

$$P = 5.247, \qquad P = 21.65, \qquad P = 51.84$$

 $P = n^2 - 1$ for $n = 2, 3, 4, \cdots$

Pre-buckling pressure

P < 3

 $P = n^2 - 1$ for $n = 2, 3, 4, \cdots$

Mode 2 buckling

P > 3

 $P = n^2 - 1$ for $n = 2, 3, 4, \cdots$

Mode 2 self-contact

P = 5.247

 $P = n^2 - 1$ for $n = 2, 3, 4, \cdots$

Mode 3 buckling

P > 8

 $P = n^2 - 1$ for $n = 2, 3, 4, \cdots$

Mode 3 self-contact

P = 21.65

$$P = n^2 - 1$$
 for $n = 2, 3, 4, \cdots$

Mode 4 buckling

P > 15

$$P = n^2 - 1$$
 for $n = 2, 3, 4, \cdots$

Mode 4 self-contact

P = 51.84

Conformal mapping

We seek a mapping from the flow around a circle (Shankar 1992)

Conformal mapping

We take the mapping functions to be

$$z = A(t)\zeta + a_0(t) + \sum_{n=1}^{\infty} a_n(t)\zeta^{-n},$$

$$w = \alpha A(t)\zeta + b_0(t) + \sum_{n=1}^{\infty} b_n(t)\zeta^{-n},$$

with the values on the cell wall given by the parametrisation $\zeta=e^{i\phi}$

$$\eta(\phi, t) = A(t)e^{i\phi} + a_0(t) + \sum_{n=1}^{\infty} a_n(t)e^{-in\phi},$$

 $\Omega(\phi, t) = \alpha A(t)e^{i\phi} + b_0(t) + \sum_{n=1}^{\infty} b_n(t)e^{-in\phi},$

Governing equations

Bernoulli's equation

$$\operatorname{Re}\left(\frac{\partial\Omega}{\partial t}-\frac{\Omega_{\phi}}{\eta_{\phi}}\frac{\partial\eta}{\partial t}\right)=-\frac{1}{2}(q^{2}-\alpha^{2})+\kappa_{ss}+\frac{1}{2}\kappa^{3}-\sigma\kappa+P,$$

• Kinematic condition

$${\sf Im}(\overline{\eta}_{\phi}rac{\partial\eta}{\partial t})=-\,{\sf Im}(\Omega_{\phi})$$

• Inextensibility:

$$\int_0^{2\pi} |\eta_\phi| d\phi = 2\pi.$$

Figure: Sketch showing the classification of the steady solutions. At $\alpha = 0$, Flaherty *et al.* (1972). The arrows illustrate a continuous path taken to reach a particular cell type.

Linear stability os the steady solutions

To study the linear stability of the steady solutions, we introduce a small perturbation to both the cell boundary and the flow itself

$$\eta(\phi,t) = \eta^{s}(\phi) + \hat{\eta}(\phi,t), \quad \Omega(\phi,t) = \Omega^{s}(\phi) + \hat{\Omega}(\phi,t)$$

Taking a small perturbation $\hat{\mathbf{x}}(t) = \{\hat{a}_{1\cdots n}, \hat{b}_{1\cdots n}\}$, we obtain

$$A\mathbf{\hat{x}}_t = B\mathbf{\hat{x}},$$

where A and B depend on the steady terms a_n^s , b_n^s calculate above. Taking $\hat{\mathbf{x}}(t) = \hat{\mathbf{x}}_0 e^{\lambda t}$, we have

$$(A\lambda - B)\,\mathbf{\hat{x}}_0 = 0.$$

A steady solution is said to be spectrally stable if $Re(\lambda) \leq 0$ for all eigenvalues λ , and unstable otherwise.

Linear stability

Figure: Properties of the vertically oriented cells.

Linear stability

Figure: Properties of the horizontally oriented cells

Time-evolution of the fully nonlinear unsteady system

The governing equations are

$$\mathsf{Im}(\overline{\eta}_{\phi}rac{\partial\eta}{\partial t}) = -\mathsf{Im}(\Omega_{\phi})$$

$$\operatorname{\mathsf{Re}}\left(\frac{\partial\Omega}{\partial t}\right) = \operatorname{\mathsf{Re}}\left(\frac{\Omega_{\phi}}{\eta_{\phi}}\frac{\partial\eta}{\partial t}\right) - \frac{1}{2}(q^2 - \alpha^2) + \kappa_{ss} + \frac{1}{2}\kappa^3 - \sigma(t)\kappa + P,$$
$$\int_0^{2\pi}\kappa \operatorname{\mathsf{Im}}(\Omega_{\phi})d\phi = 0.$$

where

$$\eta = A(t)e^{in\phi} + a_0(t) + \sum_{n=1}^{\infty} a_n(t)e^{-in\phi}$$

 $\Omega = \alpha A(t)e^{in\phi} + b_0(t) + \sum_{n=1}^{\infty} b_n(t)e^{-in\phi},$

Numerical method

Using a Hilbert transform, we obtain an explicit system. Kinematic condition:

$$\eta_t = \mathrm{i} \eta_\phi \operatorname{\mathsf{Re}}\left(\frac{\mathrm{i} \Omega_\phi}{|\eta_\phi|^2}\right) + \eta_\phi \mathcal{H}\left(\operatorname{\mathsf{Re}}\left(\frac{\mathrm{i} \Omega_\phi}{|\eta_\phi|^2}\right)\right),$$

Bernoulli's equation:

$$\begin{split} \Omega_t = & \frac{\Omega_{\phi}}{\eta_{\phi}} \eta_t - \frac{1}{2} (q^2 - \alpha^2) + (\kappa_{ss} + \frac{1}{2} \kappa^3) + P \\ & + \mathrm{i} \mathcal{H} \left(\frac{1}{2} u^2 - \kappa_{ss} - \frac{1}{2} \kappa^3 \right) + \sigma \left(\mathrm{i} \mathcal{H} \left(\kappa \right) - \kappa \right), \end{split}$$

Inextensibility condition:

$$\int_0^{2\pi} \kappa_t \operatorname{Im}(\Omega_{\phi}) + \kappa \operatorname{Im}(\Omega_{\phi,t}) d\phi = 0.$$

Unstable eigenvalues for horizontally oriented cells

Figure: Properties of the horizontally oriented cells

Unsteady results: horizontally oriented cells

Unsteady results: $\alpha = 1$, P = 6

Unsteady results: $\alpha = 0.5$, P = 8.05

Cells with corners

Figure: A sketch of the flow

$$q = 0$$
 at $s = 0$, Kutta condition

$$w - \alpha z - \frac{\beta}{2\pi i} \log(z) \to 0$$
 as $z \to \infty$, far-field condition
 $\frac{1}{2}(q^2 - \alpha^2) - (\kappa_{ss} + \frac{1}{2}\kappa^3 - \sigma\kappa) - P - \frac{\alpha\beta}{2\pi}(x_s + \kappa y) = 0.$
with dimensionless parameters $\alpha = \sqrt{\frac{\ell^3 \rho U^2}{E_B}}, \beta = \Gamma \sqrt{\frac{\ell \rho}{E_B}}.$

Emilian Părău (UEA)

Equilibria (no flow)

Figure: Cell subject to a uniform external pressure for various corner angles

Karman-Trefftz mapping for elastic aerofoil in uniform flow

 ζ -plane (circle) $\rightarrow z$ -plane (aerofoil)

$$z = p \frac{(\zeta + 1)^p + (\zeta - 1)^p}{(\zeta + 1)^p - (\zeta - 1)^p}, \qquad p = 2 - \frac{\theta_c}{\pi}$$

Cell with corner ($\beta \neq 0$) in the uniform flow

Figure: Potential flow for $\alpha = 2$, P = 5, $\beta = 3$, $\theta_c = \pi/6$

Viscous simulations

Gerris simulation for the viscous flow, with $Re = 10^4$, $\beta = \alpha = 1$, P = 0.

Emilian Părău (UEA)

Other work

• Consider elastic cells with internal support

Figure: Sketch of the flow

References

1. M.G. Blyth, E.I. Părău, Deformation of an elastic cell in a uniform stream and in a circulatory flow, *IMA J. Applied Maths.* **78** (2013), 665-684

2. A. Yorkston, M. G. Blyth, E. I. Părău, The deformation and stability of an elastic cell in a uniform flow, *SIAM J. Appl. Math.* 80(1), (2020), 71–94.

3. A. Yorkston, M. G. Blyth, E. I. Părău, A model of an inflatable elastic aerofoil, *J. Engng. Maths.* **131**, 11 (2021).

4. A. A. Yorkston, M. G. Blyth, E. I. Părău, The deformation of an elastic cell in a circulatory fluid motion, *Wave Motion* 13 (2022), 102995