Extensions for operators on Hilbert spaces which satisfy polynomial growth conditions

LAURIAN SUCIU

 \sim Results obtained in collaboration with \sim

CĂTĂLIN BADEA Lille VLADIMIR MÜLLER Prague AURELIAN CRĂCIUNESCU Timișoara

GENERAL CONSIDERATIONS

Denote by $\mathcal{B}(\mathcal{H})$ the C^* -algebra of all bounded linear operators acting on a complex Hilbert space \mathcal{H} . Let \mathcal{H} be a closed subspace of a Hilbert space \mathcal{K} . We denote by $P_{\mathcal{H}} \in \mathcal{B}(\mathcal{K})$ the orthogonal projection onto \mathcal{H} .

Let $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$.

We say that S is an **extension** of T if $SH \subset H$ and $S|_{H} = T$, i.e. on $\mathcal{K} = \mathcal{H} \oplus \mathcal{H}^{\perp}$, the operator S has the form

$$S = egin{pmatrix} T & \star \ 0 & \star \end{pmatrix}.$$

We say that S is a (power) dilation of T if

$$T^n = P_{\mathcal{H}}S^n|_{\mathcal{H}}, \quad \forall \ n \ge 0.$$

This is equivalent with one of the following matrix representations

$$S = \begin{pmatrix} T & \star \\ 0 & \star \end{pmatrix}$$
, or $S = \begin{pmatrix} \star & \star & \star \\ 0 & T & \star \\ 0 & 0 & \star \end{pmatrix}$, or $S = \begin{pmatrix} \star & \star \\ 0 & T \end{pmatrix}$.

The existence of unitary dilations for Hilbert space contractions are basic results in dilation theory (see the monographs of **Sz.-Nagy-Foias-Bercovici-Kerchy, Foias-Frazho, N. K. Nikolski** [23, 10, 18]).

Recall that $T \in \mathcal{B}(\mathcal{H})$ is called *m*-isometric for some $m \ge 1$ if it satisfies the relation

$$\sum_{j=0}^m (-1)^j \binom{m}{j} T^{*j} T^j = 0.$$

1-isometries are just isometries, (see the trilogy of **Agler-Stankus** [1,2,3] for more about *m*-isometries).

The powers of an *m*-isometry S can grow only polynomially: $\exists K$ such that

$$\|S^n\|^2 \leq Kn^{m-1}, \forall n \in \mathbb{N}.$$

Therefore any *T* which has an *m*-isometric dilation must satisfy the same estimate.

In particular *T* is a **2-isometry** if $T^{*2}T^2 - 2T^*T + I = 0$. Also, *T* is called:

- concave if $T^{*2}T^2 2T^*T + I \leq 0$ (i.e. $(||T^nx||^2)_{n>0}$ is a concave sequence for any $x \in \mathcal{H}$);
- convex if $T^{*2}T^2 2T^*T + l \ge 0$ (i.e. $(||T^nx||^2)_{n>0}$ is a convex sequence for any $x \in \mathcal{H}$);

• expansive if $T^*T - I \ge 0$. A concave operator is expansive.

For a given bounded sequence $(\lambda_n)_{n=0}^{\infty} \subseteq \mathbb{C}$ there exists a unique operator $W \in \mathcal{B}(\ell^2(\mathcal{H}))$, called a **unilateral weighted shift** with weights $(\lambda_n)_{n=0}^{\infty}$, such that

$$W(h_0, h_1, h_2, \cdots) = (0, \lambda_0 h_0, \lambda_1 h_1, \cdots), \quad n \in \mathbb{N}.$$

Theorema 1.1

If $m \in \mathbb{N}^*$ and $T \in \mathcal{B}(\mathcal{H})$, then the following conditions are equivalent :

- (i) T is an m-isometry,
- (ii) $T^{*n}T^n$ is a polynomial in n of degree at most m 1,
- (iii) for each $h \in \mathcal{H}$, $||T^nh||^2$ is a polynomial in n of degree at most m 1,
- (iv) *T* is injective and for each nonzero $h \in \mathcal{H}$, the unilateral weighted shift $W_{T,h} \in \mathcal{B}(\ell^2(\mathbb{C}))$ with weights $\left(\frac{\|T^{n+1}h\|}{\|T^nh\|}\right)_{n=0}^{\infty}$ is an m-isometry.

Agler-Stankus, 1995

 $B \in \mathcal{B}(\mathcal{H})$ is called a Brownian unitary operator if

$$B = \begin{pmatrix} V & \sigma E \\ 0 & U \end{pmatrix},$$

where

$$\rightarrow$$
 V, E are isometries with V^{*}E = 0 and Ran(E) = Ker(V^{*});

 $\rightarrow U$ is unitary;

 $\rightarrow \sigma^2 = ||B^*B - I||$, where $\Delta_B = B^*B - I$ is the covariance operator for *B*.

If T is a 2-isometry on \mathcal{H} then there exist $\mathcal{K} \supset \mathcal{H}$ and B on \mathcal{K} a Brownian unitary with the same covariance as T such that $B|_{\mathcal{H}} = T$. Hence an operator which has a 2-isometric dilation has also a Brownian unitary dilation.

Let *T* be a left invertible operator on \mathcal{H} , $T' = T(T^*T)^{-1}$ its Cauchy dual. *T'* is also left invertible.

We define

$$\mathcal{H}_{\infty}(T) = \bigcap_{n\geq 0} T^n \mathcal{H}.$$

We say that T is

- \rightarrow analytic if $\mathcal{H}_{\infty}(\mathcal{T}) = \{0\};$
- \rightarrow has the wandering subspace property (WSP) if $\bigvee_{n>0} T^n \text{Ker}(T^*) = \mathcal{H}$;

 \rightarrow admits a Wold type decomposition (WTD) if

$$\mathcal{H} = \mathcal{H}_{\infty}(T) \oplus \bigvee_{n \geq 0} T^n \operatorname{Ker}(T^*),$$

where the subspaces are reducing for T and $T|_{\mathcal{H}_{\infty}(T)}$ is unitary.

S. Shimorin, 2001

T is analytic iff T' has WSP;

T admits a WTD iff T' admits a WTD. In this case $\mathcal{H}_{\infty}(T) = \mathcal{H}_{\infty}(T')$.

If T is concave then T is **analytic** iff T' is **analytic**. Also, if T is concave then it admits a **WTD**.

If T is analytic then

$$\mathcal{H} \longleftrightarrow \mathcal{D} = \{\Theta_h : h \in \mathcal{H}\}$$

$$h \leftrightarrow \Theta_h$$
, $\Theta_h : D(0, r(T')^{-1}) \to \operatorname{Ker}(T^*)$

$$(\Theta_h)(z) = \sum_{n \ge 0} (P_{\operatorname{Ker}(T^*)}T'^{*n}h)z^n$$

$$T \longleftrightarrow M_z$$
 on \mathcal{D} , $(M_z f)(z) = zf(z)$

$$T'^* \longleftrightarrow B_Z$$
 on \mathcal{D} , $(B_Z f)(Z) = \frac{f(Z) - f(0)}{Z}$.

A. Olofsson, 2004

If T is an analytic 2-isometry then $\mathcal{D} = \mathcal{D}_{\mu}$ where

$$\mu : \operatorname{Bor}(\mathbb{T}) \to \mathcal{B}(\operatorname{Ker}(T^*));$$

$$\widehat{\mu}(n) = \widehat{\mu}(-n)^* = P_{\text{Ker}(T^*)}T^{*n}(T^*T - I)|_{\text{Ker}(T^*)}; \quad n \ge 0;$$

$$egin{aligned} &\|f\|^2_\mu = \|f\|^2_{H^2} + \int_{\mathbb{D}} \langle \mathcal{P}(\mu)(z)f'(z),f'(z)
angle \mathrm{d}\mathcal{A}(z);\ &\mathcal{P}(\mu)(z) = \int_{\mathbb{T}} \mathcal{P}(z,e^{i heta})\mathrm{d}\mu(e^{i heta}), \quad z\in\mathbb{D}\ &\mathcal{P}(z,e^{i heta}) = rac{1-|z|^2}{|e^{i heta}-z|^2}, \quad z\in\mathbb{D}. \end{aligned}$$

GENERAL CONSIDERATIONS *m*-ISOMETRIC DILATIONS SUB-BROWNIAN *m*-ISOMETRIES AND THEIR EXTENSIONS

m-ISOMETRIC DILATIONS

Theorema 2.1

Let $m \ge 0$ be an integer and let $T \in \mathcal{B}(\mathcal{H})$ be an operator satisfying the condition

$$\sup_{n \ge 1} n^{-m/2} \|T^n\| < \infty.$$
(2.1)

Then T has an expansive and analytic (m + 3)-isometric dilation.

Suppose first that the Hilbert space \mathcal{H} is separable. Let $K \ge \max\{1, n^{-m/2} || T^n || : n \ge 1\}$. Then

$$\|T^n\|^2 \leq K^2 n^m, \quad n \geq 1.$$

For every integer $s \ge 1$ we set

$$\alpha_s = \left(\frac{2Ks+1}{2K(s-1)+1}\right)^{(m+2)/2}$$

Clearly $\alpha_1 \geq \alpha_2 \geq ... \geq 1$.

Let $\ell_+^2(\mathcal{H}) = \bigoplus_{j=0}^{\infty} \mathcal{H}_j$, where $\mathcal{H}_j = \mathcal{H}$ for $j \ge 0$, and let *S* be the weighted forward shift of multiplicity dim \mathcal{H} with the weights α_s , i.e., *S* is defined by

$$S(h_0, h_1, ...) = (0, \alpha_1 h_0, \alpha_2 h_1, ...)$$

for all sequences $(h_0, h_1, ...) \in \ell^2_+(\mathcal{H})$. Then

$$\|S^n(h_0,0,...)\|^2 = \|(0,0,...,(2Kn+1)^{(m+2)/2}h_0,0,...)\|^2 = (2Kn+1)^{m+2}$$

Moreover, it is easy to see that **S** is an (m + 3)-isometry.

Let S^* be the adjoint of S, i.e., S^* is the weighted backward shift defined by

$$S^*(h_0, h_1, h_2, ...) = (\alpha_1 h_1, \alpha_2 h_2, ...).$$

We prove now that S^* is (unitarily equivalent to) an extension of T^* . Indeed, for $s \ge 1$, let

$$b_s = (\alpha_1 \cdots \alpha_s)^{-2} = (2Ks + 1)^{-m-2}.$$

Using (2.1), we get

$$\begin{split} \sum_{s=1}^{\infty} b_s \|T^{*s}\|^2 &= \sum_{s=1}^{\infty} b_s \|T^s\|^2 \le K^2 \sum_{s=1}^{\infty} s^m (2Ks+1)^{-m-2} \\ &\le K^{-m} 2^{-m-2} \sum_{s=1}^{\infty} s^{-2} \le \frac{\pi^2}{24} < 1. \end{split}$$

Thus, by **V. Müller** [17, Theorem 2.2], T^* is unitarily equivalent to a restriction of S^* to an invariant subspace (H being separable).

In conclusion *S* is an (m + 3)-isometric dilation of *T* and it is clear that *S* is analytic and expansive (because $\alpha_s \ge 1$ for all $s \ge 1$).

Remark 2.2

We have the following implications:

T has m-isometric dilation

$$\sup_{n}\frac{\|T^n\|^2}{n^{m-1}}<\infty$$

→ T has an expansive, analytic and minimal (m+2)-isometric dilation.

Invertible *m*-isometric extensions. If *T* is an invertible *m*-isometry and *m* is even, then *T* is an (m - 1)-isometry. Suppose that m + 3 is odd.

The (m + 3)-isometric operator *S* in Theorem 2.1 has an invertible (m + 3)-isometric extension \hat{S} .

Indeed, assuming that

$$\|T^n\|^2 \leq K^2 n^m, \quad n \geq 1,$$

for fixed *m* and *K*, set $w_n = (2Kn + 1)^{m+2}$ for $n \in \mathbb{Z}$.

Let \hat{S} be the weighted bilateral shift of multiplicity dim \mathcal{H} defined by

 \implies

$$\widehat{\boldsymbol{S}}(\ldots,\boldsymbol{h}_{-1},\boldsymbol{h}_{0},\boldsymbol{h}_{1},\ldots) = \left(\ldots,\sqrt{\frac{\boldsymbol{w}_{-1}}{\boldsymbol{w}_{-2}}}\boldsymbol{h}_{-2},\sqrt{\frac{\boldsymbol{w}_{0}}{\boldsymbol{w}_{-1}}}\boldsymbol{h}_{-1},\sqrt{\frac{\boldsymbol{w}_{1}}{\boldsymbol{w}_{0}}}\boldsymbol{h}_{0},\ldots\right).$$

Clearly \widehat{S} is invertible and (m+3)-isometric. Moreover, \widehat{S} is a dilation of T.

Corollary 2.3

Every power bounded operator has an invertible 3-isometric dilation.

Since every invertible 2-isometry is a unitary operator Corollary 2.3 is optimal,

In the case of Foguel-Hankel type operators, using a result of Bermudez-Martinon-Müller-Noda [6] we can give the following

Theorema 2.4

Let $T \in \mathcal{B}(\mathcal{H})$ be an operator such that, with respect to an orthogonal decomposition $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1$, has the block matrix form

$$T = \begin{pmatrix} C_0 & E \\ 0 & C_1 \end{pmatrix},$$

where C_i are contractions on \mathcal{H}_i (i = 0, 1) and $E \in \mathcal{B}(\mathcal{H}_1, \mathcal{H}_0)$ is such that $EC_1 = C_0E$. Then T has a 3-isometric dilation on $\mathcal{K} \supset \mathcal{H}$

$$S = \begin{pmatrix} V_0 & L \\ 0 & V_1 \end{pmatrix} = \begin{pmatrix} V_0 & 0 \\ 0 & V_1 \end{pmatrix} + \begin{pmatrix} 0 & L \\ 0 & 0 \end{pmatrix}.$$

where V_i are the minimal isometric dilations of C_i , i = 0, 1 and L is a dilation for E such that $LV_1 = V_0L$.

Furthermore, S can be extended to a Jordan operator J i.e J = U + N, U unitary, $N^2 = 0$ and UN = NU (see [16]).

Corollary 2.5

Every Foguel-Hankel operator, i.e. $T = \begin{pmatrix} S_+^* & Y_- \\ 0 & S_-^* \end{pmatrix}$

$$\left(egin{smallmatrix} X \ S_+ \end{pmatrix}
ight)$$
 where $XS_+ = S_+^*X,\,S_+$ being the unilateral

shift can be dilated to a Jordan operator.

SUB-BROWNIAN *m*-ISOMETRIES AND THEIR EXTENSIONS

In what follows we investigate a class of *m*-isometries which have Brownian type extensions in the sense of the definition below. We refer here to *m*-isometries $T \in \mathcal{B}(\mathcal{H})$ for an integer $m \ge 3$ that is with $\Delta_T^{(m)} = 0$, which are $\Delta_T^{(j)}$ -**bounded** for j = 1, 2, ..., m - 2, where

$$\Delta_T^{(1)} = \Delta_T = T^*T - I \quad \text{and} \quad \Delta_T^{(j+1)} = T^*\Delta_T^{(j)}T - \Delta_T^{(j)}.$$

This means that $\Delta_T^{(j)} \ge 0$ and there exist constants $\alpha_j > 0$ such that

$$T^* \Delta_T^{(j)} T \le \alpha_j^2 \Delta_T^{(j)}, \quad j = 1, 2, ..., m - 2.$$
 (3.1)

In this case the conditions (3.1) are equivalent to

$$0 \le \Delta_T^{(j+1)} \le (\alpha_j^2 - 1) \Delta_T^{(j)}, \quad j = 1, 2, ..., m - 2.$$
(3.2)

For T, j satisfying (3.1) let $\sigma_j \ge 1$ be the scalar given by

$$\sigma_j := \inf\{\alpha > 1 : T^* \Delta_T^{(j)} T \le \alpha^2 \Delta_T^{(j)}\}.$$
(3.3)

Then the scalar

$$\sigma := \max\{\|\Delta_T^{1/2}\|, \quad (\sigma_j^2 - 1)^{1/2}; \quad j = 1, 2, ..., m - 2\}$$
(3.4)

is called the **covariance** of *T*, and it is denoted as $\sigma = cov(T)$.

We illustrate now examples of operators satisfying the conditions of the form (3.1). An operator $B \in \mathcal{B}(\mathcal{H})$ is called an *m*-Brownian unitary for an integer $m \ge 2$, if under a decomposition $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus ... \oplus \mathcal{H}_m$, *B* has a matrix representation of the form

$$B = \begin{pmatrix} V_1 & \delta E_1 & 0 & \dots & 0 & 0 \\ 0 & V_2 & \delta E_2 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & V_{m-1} & \delta E_{m-1} \\ 0 & 0 & 0 & \dots & 0 & U \end{pmatrix},$$
(3.5)

where V_j , E_j are isometries with $\mathcal{N}(V_j^*) = \mathcal{R}(E_j)$ for j = 1, 2, ..., m - 1, U is unitary and $\delta > 0$ is a scalar.

The following main result shows that the *m*-Brownian unitaries play the same role in the theory of *m*-isometries as (2-) Brownian unitaries in the context of 2-isometries (see [2, Theorem 5.80]).

Theorema 3.1

For an operator $T \in \mathcal{B}(\mathcal{H})$ a scalar $\sigma > 0$ and an integer $m \ge 3$, the following statements are equivalent:

- (i) *T* is *m*-isometric and $\Delta_T^{(j)}$ -bounded for j = 1, 2, ..., m 2 with $cov(T) \le \sigma$;
- (ii) T has an extension to an m-Brownian unitary B with $cov(B) = \sigma$.

An *m*-isometry satisfying (3.1) is called a **sub-Brownian** *m*-isometry.

Let T be as in (i), that is satisfying the conditions:

$$\Delta_T^{(m)} = 0, \quad \|\Delta_T\| \leq \sigma^2, \quad \Delta_T^{(j)} \geq 0, \quad T^* \Delta_T^{(j)} T \leq (\sigma^2 + 1) \Delta_T^{(j)}$$

for j = 1, 2, ..., m - 2. Denote shortly $\Delta_1 = \Delta_T$ and $\Delta_j = \Delta_T^{(j)}$ for j = 2, ..., m. So we have

$$I - \sigma^{-2}\Delta_1 \ge 0$$
, $\Delta_{j-1} - \sigma^{-2}\Delta_j \ge 0$ $(j = 2, ..., m)$.

Now from the last condition we obtain for $j \in \{2, ..., m-1\}$,

$$T^*(\Delta_{j-1} - \sigma^{-2}\Delta_j)T - \Delta_{j-1} + \sigma^{-2}\Delta_j = \Delta_j - \sigma^{-2}\Delta_{j+1} \ge 0$$

therefore $T^*(\Delta_{j-1} - \sigma^{-2}\Delta_j)T \ge \Delta_{j-1} - \sigma^{-2}\Delta_j$. On the other hand, using the fact that $T^*\Delta_1T \le (\sigma^2 + 1)\Delta_1$ we get the relation

$$T^*(I-\sigma^{-2}\Delta_1)T=T^*T-\sigma^{-2}T^*\Delta_1T\geq \Delta_1+I-(1+\sigma^{-2})\Delta_1=I-\sigma^{-2}\Delta_1.$$

This together with the previous inequalities provide that there exist the contractions C'_1 from $\mathcal{R}[(I - \sigma^{-2}\Delta_1)^{1/2}T]$ into $\mathcal{R}[(I - \sigma^{-2}\Delta_1)^{1/2}]$ and C'_j from $\mathcal{R}[(\Delta_{j-1} - \sigma^{-2}\Delta_j)^{1/2}T]$ into $\mathcal{R}[(\Delta_{j-1} - \sigma^{-2}\Delta_j)^{1/2}T]$ for $j \in \{2, ..., m-1\}$, such that

$$C_1'(I-\sigma^{-2}\Delta_1)^{1/2}T = (I-\sigma^{-2}\Delta_1)^{1/2}, \quad C_j'(\Delta_{j-1}-\sigma^{-2}\Delta_j)^{1/2}T = (\Delta_{j-1}-\sigma^{-2}\Delta_j)^{1/2}.$$

Next, these contractions C'_j for $j \in \{1, 2, ..., m-1\}$ can be extended (by continuity and orthogonality) to some contractions $C^*_i \in \mathcal{B}(\mathcal{H}_j)$, where

$$\mathcal{H}_1 = \overline{\mathcal{R}(I - \sigma^{-2}\Delta_1)}, \quad \mathcal{H}_j = \overline{\mathcal{R}(\Delta_{j-1} - \sigma^{-2}\Delta_j)},$$

such that $C_1^* = 0$ on $\mathcal{H}_1 \ominus \overline{\mathcal{R}[(I - \sigma^{-2}\Delta_1)^{1/2}T]}$ and $C_j^* = 0$ on $\mathcal{H}_j \ominus \overline{\mathcal{R}[(\Delta_{j-1} - \sigma^{-2}\Delta_j)^{1/2}T]}$ for $j \in \{2, ..., m-1\}$. So we have the relations

$$(I - \sigma^{-2}\Delta_1)^{1/2} = T^*(I - \sigma^{-2}\Delta_1)^{1/2}C_1, \quad (\Delta_{j-1} - \sigma^{-2}\Delta_j)^{1/2} = T^*(\Delta_{j-1} - \sigma^{-2}\Delta_j)^{1/2}C_j,$$

which lead to the identities

$$T^*(I - \sigma^{-2}\Delta_1)^{1/2}(I - C_1C_1^*)(I - \sigma^{-2}\Delta_1)^{1/2}T = T^*(I - \sigma^{-2}\Delta_1)T - (I - \sigma^{-2}\Delta_1) = \Delta_1 - \sigma^{-2}\Delta_2$$

and respectively

$$T^* (\Delta_{j-1} - \sigma^{-2} \Delta_j)^{1/2} (I - C_j C_j^*) (\Delta_{j-1} - \sigma^{-2} \Delta_j)^{1/2} T =$$

$$T^* (\Delta_{j-1} - \sigma^{-2} \Delta_j) T - (\Delta_{j-1} - \sigma^{-2} \Delta_j) = \Delta_j - \sigma^{-2} \Delta_{j+1}.$$

Now for $j \in \{1, 2, ..., m-1\}$ let V'_j on $\mathcal{K}'_j \supset \mathcal{H}_j$ be an isometric dilation for C_j . So $V'^*_j|_{\mathcal{H}_j} = C^*_j$ and denoting $\mathcal{N}_j = \mathcal{N}(V'^*_j)$ we have that

$$|I - C_j C_j^* = \mathcal{P}_{\mathcal{H}_j} (I - V_j' V_j'^*)|_{\mathcal{H}_j} = \mathcal{P}_{\mathcal{H}_j} \mathcal{P}_{\mathcal{N}_j}|_{\mathcal{H}_j},$$

where $P_{\mathcal{H}_j}, P_{\mathcal{N}_j} \in \mathcal{B}(\mathcal{K}'_j)$ are the corresponding orthogonal projections. Now the previous identities for C_j permit to define the isometries E'_j from \mathcal{H}_{j+1} into \mathcal{N}_j with $\mathcal{R}(E'_j) \subset \mathcal{N}_j$, such that

$$E'_1(\Delta_1 - \sigma^{-2}\Delta_2)^{1/2}h = P_{\mathcal{N}_1}(I - \sigma^{-2}\Delta_1)^{1/2}Th,$$

and respectively

$$E'_{j}(\Delta_{j}-\sigma^{-2}\Delta_{j+1})^{1/2}h = P_{\mathcal{N}_{j}}(\Delta_{j-1}-\sigma^{-2}\Delta_{j})^{1/2}Th,$$

for $h \in \mathcal{H}$ and j = 2, ..., m - 1. Clearly, the isometry E'_{m-1} from $\mathcal{H}_m = \overline{\mathcal{R}(\Delta_{m-1})}$ into \mathcal{N}_{m-1} satisfies the relation

$$E'_{m-1}(\Delta_{m-1}^{1/2}h) = P_{\mathcal{N}_{m-1}}(\Delta_{m-2} - \sigma^{-2}\Delta_{m-1})^{1/2}Th.$$

Notice that if for an index *j* one has $\mathcal{R}(E'_j) \neq \mathcal{N}_j$ then $\mathcal{E}_j = \mathcal{N}_j \ominus \mathcal{R}(E'_j)$ is a wandering subspace for V'_j i.e. $V'^n_j \mathcal{E}_j \perp V'^q_j \mathcal{E}_j$ for $n, q \ge 0, n \ne q$, while the subspace $\ell^2_+(\mathcal{E}_j) = \bigoplus_{n=0}^{\infty} V'^n_j \mathcal{E}_j$ of \mathcal{K}'_j is reducing for V'_j . In this case $\widetilde{V}_j = V'_j|_{\mathcal{K}'_j \ominus \ell^2_+(\mathcal{E}_j)}$ is an isometric dilation for C_j with $\mathcal{N}(\widetilde{V}^*_j) = \mathcal{R}(E'_j)$. Thus to simplify the notation we can assume that $V'_j = \widetilde{V}_j$, so that $\mathcal{N}_j = \mathcal{R}(E'_j)$, for $j \in \{1, 2, ..., m-1\}$.

Next we have in view that $T^*\Delta_{m-1}T = \Delta_{m-1}$ (*T* being an *m*-isometry), hence there exists an isometry *V* on $\mathcal{H}_m = \overline{\mathcal{R}(\Delta_{m-1})}$ such that

$$V\Delta_{m-1}^{1/2} = \Delta_{m-1}^{1/2} T.$$

Let *U* on $\mathcal{K}_m \supset \mathcal{H}_m$ be a unitary extension for *V*. Consider the spaces

$$\mathcal{K}_{m-1} = \mathcal{L}_{m-1} \oplus \mathcal{K}'_{m-1}, \text{ where } \mathcal{L}_{m-1} = \ell^2_+ (\mathcal{K}_m \ominus \mathcal{H}_m),$$

and successively for j = m - 2, ..., 2, 1, the spaces

$$\mathcal{K}_j = \mathcal{L}_j \oplus \mathcal{K}'_j, \text{ where } \mathcal{L}_j = \ell^2_+(\mathcal{K}_{j+1} \ominus \mathcal{H}_{j+1}).$$

Let S_j be the forward shift on \mathcal{L}_j , so $\mathcal{N}(S_j^*) = \mathcal{K}_{j+1} \ominus \mathcal{H}_{j+1}$. Define the mappings $V_j = S_j \oplus V'_j$ on $\mathcal{K}_j = \mathcal{L}_j \oplus \mathcal{K}'_j$ and $E_j : \mathcal{K}_{j+1} \to \mathcal{K}_j$, this later having the block matrix

$$E_{j} = \begin{pmatrix} 0 & L_{j} \\ E'_{j} & 0 \end{pmatrix} : \begin{bmatrix} \mathcal{H}_{j+1} \\ \mathcal{K}_{j+1} \ominus \mathcal{H}_{j+1} \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{L}_{j} \\ \mathcal{K}'_{j} \end{bmatrix},$$

where $L_j : \mathcal{K}_{j+1} \ominus \mathcal{H}_{j+1} \rightarrow \mathcal{L}_j$ is the embedding mapping. Then V_j is an isometric dilation for C_j , while E_j is an isometry from \mathcal{K}_{j+1} into \mathcal{K}_j with $\mathcal{N}(V_i^*) = \mathcal{R}(E_j)$, for j = 1, 2, ..., m - 1.

Now we are able to define the desired extension of *T*. This is the *m*-Brownian unitary on $\mathcal{K} = \bigoplus_{i=1}^{m} \mathcal{K}_i$ with the representation

$$B = \begin{pmatrix} V_1 & \delta E_1 & 0 & \dots & 0 & 0 \\ 0 & V_2 & \delta E_2 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & V_{m-1} & \delta E_{m-1} \\ 0 & 0 & 0 & \dots & 0 & U \end{pmatrix}.$$
 (3.6)

To prove that *B* is an extension for *T* we find an isometry $Z : \mathcal{H} \to \mathcal{K}$ which satisfies the relation ZTh = BZh for $h \in \mathcal{H}$. Thus we define *Z* by the relation

$$Zh = (I - \sigma^{-2}\Delta_1)^{1/2}h \oplus \left(\bigoplus_{j=2}^m \sigma^{-(j-1)}(\Delta_{j-1} - \sigma^{-2}\Delta_j)^{1/2}h\right)$$

for $h \in \mathcal{H}$. It is easy to see for j = 2, 3, ..., m - 1 that

$$\|\sigma^{-(j-1)}(\Delta_{j-1} - \sigma^{-2}\Delta_j)^{1/2}h\|^2 = \sigma^{-2(j-1)} \|\Delta_{j-1}^{1/2}h\|^2 - \sigma^{-2j} \|\Delta_j^{1/2}h\|^2$$

and $\|\sigma^{-(m-1)}\Delta_{m-1}^{1/2}h\|^2 = \sigma^{-2(m-1)}\|\Delta_{m-1}^{1/2}h\|^2$ (for j = m). So it follows that $\|Zh\|^2 = \|h\|^2$ for $h \in \mathcal{H}$, that is Z is an isometry.

Also, we have the relations

$$ZTh = (I - \sigma^{-2}\Delta_1)^{1/2} Th \oplus \bigoplus_{j=2}^m \sigma^{-j+1} (\Delta_{j-1} - \sigma^{-2}\Delta_j)^{1/2} Th,$$

and by (3.6),

$$BZh = [V_1(I - \sigma^{-2}\Delta_1)^{1/2}h + E_1(\Delta_1 - \sigma^{-2}\Delta_2)^{1/2}h]$$

$$\bigoplus \bigoplus_{j=2}^{m-1} [V_j(\sigma^{-j+1}(\Delta_{j-1} - \sigma^{-2}\Delta_j)^{1/2}h + \sigma E_j(\sigma^{-j}(\Delta_j - \sigma^{-2}\Delta_{j+1})^{1/2}h)]$$

$$\bigoplus \sigma^{-m+1}U\Delta_{m-1}^{1/2}h = [V_1(I - \sigma^{-2}\Delta_1)^{1/2}h + E_1(\Delta_1 - \sigma^{-2}\Delta_2)^{1/2}h]$$

$$\bigoplus \bigoplus_{j=2}^{m-1} \sigma^{-j+1} [V_j(\Delta_{j-1} - \sigma^{-2}\Delta_j)^{1/2}h + E_j(\Delta_j - \sigma^{-2}\Delta_{j+1})^{1/2}h] \oplus \sigma^{-m+1}U\Delta_{m-1}^{1/2}h.$$

The last terms of *ZT* and *BZ* (for j = m) coincide, having in view that $\Delta_{m-1}^{1/2} Th = V \Delta_{m-1}^{1/2} h = U \Delta_{m-1}^{1/2} h$. For the other terms of *ZT* and *BZ* we use that $V_j^*|_{\mathcal{H}_j} = C_j^*$, as well as the definitions of C_j (resp. C'_j) and E_j , for j = 1, 2, ..., m - 1.

Thus we have the relations

$$(I - \sigma^{-2}\Delta_1)^{1/2}Th = V_1 C_1^* (I - \sigma^{-2}\Delta_1)^{1/2}Th + (I - V_1 V_1^*)(I - \sigma^{-2}\Delta_1)^{1/2}Th = V_1 (I - \sigma^{-2}\Delta_1)^{1/2}h + E_1 (\Delta_1 - \sigma^{-2}\Delta_2)^{1/2}h,$$

and respectively for j = 2, 3, ..., m - 1,

$$\begin{aligned} (\Delta_{j-1} - \sigma^{-2} \Delta_j)^{1/2} Th &= V_j C_j^* (\Delta_{j-1} - \sigma^{-2} \Delta_j)^{1/2} Th + (I - V_j V_j^*) (\Delta_{j-1} - \sigma^{2} \Delta_j)^{1/2} Th \\ &= V_j (\Delta_{j-1} - \sigma^{-2} \Delta_j)^{1/2} h + E_j (\Delta_j - \sigma^{-2} \Delta_{j+1})^{1/2} h. \end{aligned}$$

These identities show that ZT = BZ, so the subspace $Z\mathcal{H} = \bigoplus_{j=1}^{m} \mathcal{H}_j \subset \mathcal{K}$ is invariant for *B*. Since *Z* is unitary from \mathcal{H} onto $Z\mathcal{H}$ we conclude that *T* is unitarily equivalent to $B|_{Z\mathcal{H}}$. In other words, this means that *B* is an extension for *T*. Thus we proved that (i) implies (ii).

The converse implication is immediate. Indeed, if *B* is as *m*-Brownian unitary extension for *T* with $cov(B) = \sigma$ then $\Delta_T^{(j)} = P_{\mathcal{H}} \Delta_B^{(j)}|_{\mathcal{H}}$ for j = 1, 2, ..., m. So $\Delta_T^{(m)} = 0$ i.e. *T* is an *m*-isometry and $\|\Delta_T\| \le \|\Delta_B\| = \sigma^2$. Also, since

$$T^*\Delta_T^{(j)}T = \mathcal{P}_{\mathcal{H}}B^*\Delta_B^{(j)}B|_{\mathcal{H}} \leq (\sigma^2+1)\mathcal{P}_{\mathcal{H}}\Delta_B^{(j)}|_{\mathcal{H}} = (\sigma^2+1)\Delta_T^{(j)},$$

we infer that $\sigma \ge (\sigma_j^2 - 1)^{1/2}$ where σ_j is given by (3.6), for j = 1, 2, ..., m - 2. Hence $cov(T) \le \sigma$, which shows that (ii) implies (i).

From this result and Theorem 2.1 we have the following

Corollary 3.2

If $T \in \mathcal{B}(\mathcal{H})$ is an operator which for an integer $m \geq 3$ satisfies the condition

$$\sup_{n\geq 1} n^{-\frac{m-3}{2}} \|T^n\| < \infty,$$

then T has an m-Brownian unitary dilation. In particular, if T is power bounded then it has a 3-Brownian unitary dilation.

Theorema 3.3

For a non-isometric operator $T \in B(H)$ and an integer $m \ge 3$ the following statements are equivalent:

(i) T is a sub-Brownian m-isometry;

(ii) T is expansive and there exists a sub-Brownian (m-1)-isometry $W \in \mathcal{B}(\mathcal{H})$ such that

$$\Delta_T^{1/2}T = W\Delta_T^{1/2}.$$

We characterize now the sub-Brownian *m*-isometric weighted shifts.

Theorema 3.4

Let p be a polynomial with complex coefficients of degree m - 1 for an integer m > 3, such that p(n) > 0 for each integer $n \ge 0$. Let S_m on $\mathcal{K} = \ell_+^2(\mathcal{H})$ be the weighted shift with weights

 $(\lambda_n)_{n\geq 0}$, where $\lambda_n = \sqrt{\frac{p(n+1)}{p(n)}}$ for $n \geq 0$. Then S_m is a sub-Brownian *m*-isometry if and only if

the polynomial p satisfies the conditions

$$p_q(n) := \sum_{j=0}^{q} (-1)^j {q \choose j} p(n+q-j) > 0$$
(3.7)

for all integers n > 0 and q = 1, 2, ..., m - 2, with $p_{m-2}(1) > p_{m-2}(0)$. In particular this happens when all coefficients of p are positive.

Corollary 3.5

Let *S* on $\mathcal{K} = \ell_{+}^{2}(\mathcal{H})$ be the 3-isometric weighted shift with weights $(\lambda_{n})_{n>0}$, where $\lambda_n = \sqrt{\frac{p(n+1)}{p(n)}}$ and $p(n) = an^2 + bn + c > 0$, for $n \ge 0$ and some scalars $a \ne 0$, b and c. Then S is a sub-Brownian 3-isometry if and only if a > 0 and a + b > 0.

Theorema 3.6

Let $T \in \mathcal{B}(\mathcal{H})$.

(i) If *T* is a **convex operator** such that the sequence $\left(\frac{T^n}{\sqrt{n}}\right)_n$ is bounded then it has an extension \tilde{T} on a Hilbert space $\mathcal{M} \supset \mathcal{H}$ with \tilde{T} of the form

$$\widetilde{T} = \begin{pmatrix} C & E \\ 0 & U \end{pmatrix}$$

on a decomposition $\mathcal{M} = \mathcal{M}_0 \oplus \mathcal{M}_1$, where: $\rightarrow C$ is a contraction, U is unitary and there exists F on $\mathcal{M}' \supset \mathcal{D}_C = \overline{\operatorname{Ran}(I - C^*C)^{1/2}} = \overline{\operatorname{Ran}(D_C)}$ such that

$$\overline{\operatorname{Ran}}\begin{pmatrix} D_{\mathcal{C}}\\ \mathcal{C} \end{pmatrix} \perp \overline{\operatorname{Ran}}\begin{pmatrix} \mathcal{F}\\ \mathcal{E} \end{pmatrix}$$

(ii) If *T* is a **concave operator** then it has an extension \tilde{T} on a Hilbert space \mathcal{M} which on $\mathcal{M} = \mathcal{M}_0 \oplus \mathcal{M}_1$ has the form

$$\widetilde{T} = \begin{pmatrix} V & E \\ 0 & U \end{pmatrix},$$

 \rightarrow with V an isometry, U a unitary operator and V^{*}E = 0.

REFERENCES I

- Agler J., Stankus M. *m*-isometric transformations of Hilbert spaces. Integral Equations Operator Theory, 1995, **21** (4) 383–429.

Agler J., Stankus M. *m*-isometric transformations of Hilbert spaces II. Integral Equations Operator Theory, 1995, **23** (10) 1–48.

- Agler J., Stankus M. *m*-isometric transformations of Hilbert spaces III. Integral Equations Operator Theory, 1996, **24** 379–421.
- C. Badea, V. Müller, L. Suciu, *High order isometric liftings and dilations*, Studia Math., **258** (1), (2021), 87–101.
- C. Badea, L. Suciu, *Hilbert space operators with two-isometric dilations*, J. Oper. Theory **86** (1), (2021), 93–123.

T. Bermúdez, A. Martinón, V. Müller, J. A. Noda, *Perturbation of m-Isometries by Nilpotent Operators*, Abstract and Applied Analysis, **2014**, Article ID 745479, 6 pages, 2014.

- A. Biswas, A. E. Frazho, C. Foias, Weighted commutant lifting, Acta Sci. Math. (Szeged), 65, 3–4 (1999), 657–686.

G. Cassier, *Generalized Toeplitz operators, restrictions to invariant subspaces and similarity problems*, J. Operator Theory, **53:1** (2005), 49-89.

A. Crăciunescu, L. Suciu, *Brownian extensions in the context of 3-isometries*, (2023), 1-22, submitted.

REFERENCES II

- Foias F., Frazho A. E. The Commutant Lifting Approach to Interpolation Problems. Birkhäuser Verlag, Basel-Boston-Berlin, 1990.
- L. Kérchy, Generalized Toeplitz operators, Acta Sci. Math. (Szeged) 68 (2002), 373-400.
- C.S. Kubrusly, *An Introduction to Models and Decompositions in Operator Theory*, Birkhäuser, Boston, 1997. 1067-1090.
- W. Majdak, L. Suciu, *Triangulations of operators with two-isometric liftings*, Integral Equations and Operator Theory, (2021) **93:10**, 1-24.
- W. Majdak, L. Suciu, *Convex and expansive liftings close to two-isometries and power bounded operators*, Linear Algebra and its Applications, **617** (2021), 1–26.

- McCullough S. SubBrownian operators. J Operator Theory, 1989, 22 291–305.
- S. McCullough, B. Russo, The 3-Isometric Lifting Theorem, Integral Equations Operator Theory 84, 1 (2016), 69–87.
 - V. Müller, Models for operators using weighted shifts, J. Operator Th. 20, 1 (1988), 3-20.
- N. K. Nikolski, Operators, Functions and Systems: An Easy Reading, vol I,II, AMS 2002.
 - Olofsson A. A von Neumann-Wold decomposition of two-isometries. Acta Sci Math (Szeged), 2004, **70** 715–726.

REFERENCES III

Richter S. A representation theorem for cyclic analytic two-isometries. Trans Amer Math Soc, 1991, **328** 325–349.

Shimorin S. Wold-type decompositions and wandering subspaces for operators close to isometries. J Reine Angew Math, 2001, **531** 147–189.

Suciu L. On operators with two-isometric liftings. Complex Analysis and Operator Theory, 2020, **14:5**, 1-16.

Sz.-Nagy B., Foias C., Bercovici H., Kérchy L. Harmonic Analysis of Operators on Hilbert Space. Revised and enlarged edition. In: Universitext, Springer, New York, 2010.