Shape Spaces of Nonlinear Flags

Ioana CIUCLEA joint work with Alice Barbara TUMPACH and Cornelia VIZMAN

West University of Timişoara

Motivation

Shape Analysis

Objective: measuring deformations of shapes independently of the way shapes are parameterized.

Tools needed: a Riemannian metric that is invariant to reparameterizations and quantifies the degrees of bending and stretching of a shape.

Fig 1. Two paths of transformations consisting of the same shapes with different parameterizations

The Spaces Under Consideration

Nonlinear Flag Manifolds

Let M be a manifold and $S = (S_1, ..., S_r)$ a collection of closed manifolds.

The nonlinear flag manifold of type S is the Fréchet manifold of nested submanifolds of M,

$$\mathsf{Flag}_{\mathcal{S}}(M) = \left\{ (N_1, ..., N_r) \in \prod_{i=1}^r \mathsf{Gr}_{S_i}(M) : N_i \subset N_{i+1} \right\},\$$

where

 $\operatorname{Gr}_{S_i}(M) = \{N \subseteq M : N \text{ is diffeomorphic to } S_i\}$

is the nonlinear Grassmanian of type S_i in M.

Principal bundle

Let $(\mathcal{S}, \iota) : S_1 \stackrel{\iota_1}{\hookrightarrow} S_2 \stackrel{\iota_2}{\hookrightarrow} \dots \stackrel{\iota_{r-1}}{\hookrightarrow} S_r$ be a sequence of embeddings.

The Frechet-Lie subgroup $G \subset \text{Diff}(S_r)$ of diffeomorphisms compatible with the embeddings

 $G = \{\gamma \in \mathsf{Diff}(S_r) : \gamma \circ \iota_{r-1} \circ \ldots \circ \iota_i = \iota_{r-1} \circ \ldots \circ \iota_i \circ \overline{\gamma}_i, \ \overline{\gamma}_i \in \mathsf{Diff}(S_i)\}$ is the structure group of a principal bundle:

 $\pi : \operatorname{Emb}(S_r, M) \to \operatorname{Flag}_{\mathcal{S}, \iota}(M), \quad \pi(F) = (f_1(S_1), \dots, f_r(S_r)),$ where $f_i = F \circ \iota_{r-1} \circ \dots \circ \iota_i \in \operatorname{Emb}(S_i, M).$

Here the base manifold $\operatorname{Flag}_{\mathcal{S},\iota}(M)$, called the nonlinear flag manifold of type (\mathcal{S},ι) , is a union of connected components of $\operatorname{Flag}_{\mathcal{S}}(M)$.

Fig 2. Examples of elements in the space of nonlinear flags.

The (Pre-)Shape Space

Consider $M = \mathbb{R}^3$ and the pair $S = (S^1, S^2)$ consisting of the unit sphere S^2 and the unit circle S^1 embedded at the equator:

$$\iota:\mathbb{S}^1\hookrightarrow\mathbb{S}^2$$

Let $F : \mathbb{S}^2 \to \mathbb{R}^3$ be an embedding. We will denote its image by $\Sigma := F(\mathbb{S}^2)$ and the image of its restriction to the equator by $C := (F \circ \iota)(\mathbb{S}^1)$. We call the space of all possible parameterizations of the pair (C, Σ) the pre-shape space:

$$\mathcal{P} = \mathsf{Emb}(\mathbb{S}^2, \mathbb{R}^3)$$

We call the space of all unparameterzied pairs (C, Σ) the shape space:

$$\mathcal{F} := \mathsf{Flag}_{\mathcal{S},\iota}(\mathbb{R}^3)$$

We have the principal bundle

$$\pi: \mathcal{P} \to \mathcal{F}, \quad \pi(F) = (f(\mathbb{S}^1), F(\mathbb{S}^2)) \text{ where } f := (F \circ \iota)$$

with structure group

$$G = \left\{ \gamma \in \mathsf{Diff}(\mathbb{S}^2) : \gamma \circ \iota = \iota \circ \bar{\gamma}, \ \bar{\gamma} \in \mathsf{Diff}(\mathbb{S}^1) \right\}$$

Fig 3: Examples of elements in the same orbit under the group of reparameterizations.

Tangent Spaces

Vertical / Normal Bundle

The kernel of $T\pi$ is called the vertical space and represents the tangent space to the orbit of $F \in \mathcal{P}$ under the action of the group G:

$$\operatorname{Ver}_F = \{X_F \in T_F \mathcal{P} : X_F \circ F^{-1} \text{ is tangent to } \Sigma \\ \text{and its restriction to } C \text{ is tangent to } C \}$$

The normal bundle Nor is the vector bundle over the pre-shape space \mathcal{P} , whose fiber over an embedding F is the following quotient vector space:

$$\operatorname{Nor}_F := T_F \mathcal{P} / \operatorname{Ver}_F$$

The tangent bundle to the shape space \mathcal{F} can be identified with the following quotient space:

$$T\mathcal{F} = \operatorname{Nor}/G$$

Fig 4. Deformation vector field and Darboux frame (t, n, ν) , where ν is the unit normal vector field on the oriented surface Σ , t is the unit vector field tangent to the oriented curve C and $n := \nu \times t$ is the unit normal to the curve C contained in the tangent space to the surface.

Tangent Space to the Shape Space

Let F be a parameterization of (C, Σ) . Consider the linear surjective map

$$\Psi_F : T_F \mathcal{P} \simeq \mathcal{C}^{\infty}(\mathbb{S}^2, \mathbb{R}^3) \to \mathcal{C}^{\infty}(C) \times \mathcal{C}^{\infty}(\Sigma),$$
(1)

which maps $X_F \in T_F \mathcal{P}$ to (h_1, h_2) defined by

$$h_{1} := \langle (X_{F} \circ \iota) \circ (F \circ \iota)^{-1}, n \rangle \in \mathcal{C}^{\infty}(C),$$

$$h_{2} := \langle X_{F} \circ F^{-1}, \nu \rangle \in \mathcal{C}^{\infty}(\Sigma).$$
(2)

Then the kernel of Ψ_F is the vertical subspace Ver_F , hence Ψ_F defines a map from the quotient space $\operatorname{Nor}_F = T_F \mathcal{P} / \operatorname{Ver}_F$ into $\mathcal{C}^{\infty}(C) \times \mathcal{C}^{\infty}(\Sigma)$. The resulting bundle map Ψ is *G*-invariant providing an isomorphism between the tangent space $T_{(C,\Sigma)}\mathcal{F}$ and $\mathcal{C}^{\infty}(C) \times \mathcal{C}^{\infty}(\Sigma)$.

Elastic Metrics

Riemannian Metrics on Shape Space I

1. We embed our shape space \mathcal{F} of surfaces decorated with curves in the Cartesian product $\operatorname{Gr}_{\mathbb{S}^1}(\mathbb{R}^3) \times \operatorname{Gr}_{\mathbb{S}^2}(\mathbb{R}^3)$, where $\operatorname{Gr}_{\mathbb{S}^1}(\mathbb{R}^3)$ denotes the shape space of curves and $\operatorname{Gr}_{\mathbb{S}^2}(\mathbb{R}^3)$ the shape space of surfaces.

2. We choose a family $g^{a,b}$ of Diff⁺(S¹)-invariant metrics on the space of parameterized curves which gives us the following squared norm of the variation δf :

$$\mathcal{E}_{f}'(\delta f) := g_{f}^{a,b}(\delta f, \delta f) = a \int_{\mathbb{S}^{1}} \left(\frac{\delta r}{r}\right)^{2} d\ell + b \int_{\mathbb{S}^{1}} |\delta t|^{2} d\ell$$

where $r = \|\dot{f}(t)\|$.

3. The family $g^{a,b}$ defines a family of Riemannian metrics on the shape space of curves by restricting to the normal variations of curves $\delta f = h_1 n + (h_2|_C)\nu$

$$\mathcal{E}'_F(h_1n + (h_2|_C)\nu) = a \int_C (h_1\kappa_g + h_2|_C\kappa_n)^2 d\ell + b \int_C (D_sh_1 - h_2|_C\tau_g)^2 d\ell + c \int_C (D_s(h_2|_C) + h_1\tau_g)^2 d\ell$$

where $D_sh(t) = \frac{\dot{h}(t)}{\|\dot{f}(t)\|}$ is the arc-length derivative of the variation h.

Riemannian Metrics on Shape Space II

4. We choose a family $g^{a,b,c}$ of Diff⁺(\mathbb{S}^2)-invariant metrics on the space of parameterized surfaces which gives us the following squared norm of the variation δF

$$\mathcal{E}_{F}''(\delta F) := a \int_{\mathbb{S}^{2}} \operatorname{Tr}((g^{-1}\delta g)_{0})^{2} dA + b \int_{\mathbb{S}^{2}} (\operatorname{Tr}(g^{-1}\delta g))^{2} dA + c \int_{\mathbb{S}^{2}} |\delta\nu|^{2} dA$$

where A_{0} is the traceless part of the matrix A .

5. The family $g^{a,b,c}$ defines a family of Riemannian metrics on the shape space of sufaces by restricting to the normal variations of surfaces $\delta F = h_2 \nu$:

$$\mathcal{E}_{F}''(h_{2}\nu) = a \int_{\Sigma} (h_{2})^{2} (\kappa_{1} - \kappa_{2})^{2} dA + b \int_{\Sigma} (h_{2})^{2} (\kappa_{1} + \kappa_{2})^{2} dA + c \int_{\Sigma} |\nabla h_{2}|^{2} dA$$

6. The product of these metrics is then restricted to \mathcal{F} using the characterization of the tangent space to \mathcal{F} given in Theorem 1.

Riemannian Metrics on Manifolds of Decorated Surfaces

The gauge invariant elastic metrics for parameterized curves respectively surfaces lead to a 6-parameter family of Riemannian metrics on the shape space of embedded surfaces decorated with curves:

$$\begin{aligned} \mathcal{G}_{(C,\Sigma)}(h_1,h_2) &= a_1 \int_C (h_1 \kappa_g + h_2 |_C \kappa_n)^2 d\ell &+ a_2 \int_{\Sigma} (h_2)^2 (\kappa_1 - \kappa_2)^2 dA \\ &+ b_1 \int_C (D_s h_1 - h_2 |_C \tau_g)^2 d\ell &+ b_2 \int_{\Sigma} (h_2)^2 (\kappa_1 + \kappa_2)^2 dA \\ &+ c_1 \int_C (D_s (h_2 |_C) + h_1 \tau_g)^2 d\ell &+ c_2 \int_{\Sigma} |\nabla h_2|^2 dA \end{aligned}$$
for $h_1 \in \mathcal{C}^{\infty}(C)$ and $h_2 \in \mathcal{C}^{\infty}(\Sigma).$

We call this an elastic metric because it quantifies the deformations of a shape. In our case, the term a_1 measures the stretching of the curve, the terms b_1 and c_1 measure the bending of the curve, the terms a_2 and b_2 measure the stretching of the surface and the term c_2 measures the bending of the surface.

References

- 1. I. Ciuclea, A. B. Tumpach, C. Vizman, *Shape spaces of nonlinear flags*. arXiv:2303.15184
- 2. S. Haller, C. Vizman, *Nonlinear flag manifolds as coadjoint orbits*, Ann. Global Anal. Geom. 58(2020), 385–413.
- 3. I. H. Jermyn, S. Kurtek, E. Klassen, and A. Srivastava, *Elastic* shape matching of parameterized surfaces using square root normal fields, in ECCV (5), 2012, pp. 804–817.
- 4. W. Mio, A. Srivastava, and S. H. Joshi, *On shape of plane elastic curves*, International Journal of Computer Vision, vol. 73, no. 3, pp. 307–324, 2007.
- 5. A.B. Tumpach, H. Drira, M. Daoudi, A. Srivastava, *Gauge Invariant Framework for Shape Analysis of Surfaces*. IEEE Transactions on Pattern Analysis and Machine Intelligence, January 2016, Volume 38, Number 1.