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Introduction

We consider the system

(GC)


i
∂Ψ

∂t
+ ∆Ψ =

1

ε2
Ψ
(
|Ψ|2 − 1 +

|Φ|2

ε2

)

iδ
∂Φ

∂t
+ ∆Φ =

1

ε2
Φ(q2|Ψ|2 − ε2k2

M).

Introduced by Gross (1958) and Clark (1966) to describe the motion of

an uncharged impurity in a Bose condensate.

Ψ is the wave function of the condensate. When Φ = 0, Ψ satisfies the

Gross-Pitaevskii equation

(GP) i
∂Ψ

∂t
+ ∆Ψ =

1

ε2
Ψ
(
|Ψ|2 − 1

)
.

Physical conditions:

|Ψ(t, x)| −→ 1 as |x | −→ ∞ and

∫
RN

|Φ|2(t, x) dx <∞.
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Introduction

Φ = wave function for the impurity

Dimensionless constants introduced by the physicists:

δ = mass of the impurity / boson mass (small)

q2 = boson-impurity scattering length / (2·boson diameter)

kM = dimensionless measure for the single-particle impurity energy

ε5 = healing length
boson-impurity scattering length ·

impurity mass
boson mass ε ∼= 0.2

Previous work by Grant - Roberts (1974), N. Berloff - Roberts

(2002-2006)...
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The Gross-Pitaevskii equation

The Gross-Pitaevskii equation

(GP) i
∂Ψ

∂t
+ ∆Ψ =

1

ε2
Ψ
(
|Ψ|2 − 1

)
and its stationary version, the Ginburg-Landau equation,

(GL) ∆Ψ =
1

ε2
Ψ
(
|Ψ|2 − 1

)
have been used as models for Bose-Einstein condensation, propagation of

laser beams, liquid crystals, and received considerable attention during the

last 30 years. The Ginzburg-Landau energy of Ψ is

(1) EGL(Ψ) =

∫
RN

|∇Ψ|2 +
1

2ε2
(|Ψ|2 − 1)2 dx =

∫
RN

|∇Ψ|2 + V (|Ψ|2) dx .

The natural function space for the study of (GL) and of (GP) is

E = {ψ ∈ H1
loc(RN) | EGL(ψ) <∞}

= {ψ : RN −→ C | ψ is measurable, |ψ|2 − 1 ∈ L2(RN),∇ψ ∈ L2(RN)}.
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Conserved quantities and function space for (GC)

The energy of the (GC) system is

E (Ψ,Φ) =

∫
RN

|∇Ψ|2 +
1

2ε2
(|Ψ|2 − 1)2 +

1

ε2q2
|∇Φ|2 +

1

ε4
|Ψ|2|Φ|2 dx .

The mass of Ψ is

M(Φ) =

∫
RN

|Φ|2 dx .

The energy and the mass are conserved by the flow associated to (GC).

It is natural to look for solutions (Ψ,Φ) ∈ E × H1(RN), where

E is the space of functions having finite Ginzburg-Landau energy,

H1(RN) = {ϕ ∈ L2(RN) | ∇ψ ∈ L2(RN)}.
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Cauchy problem

Theorem (P. Gérard, 2006)

Let N ∈ {1, 2, 3}. For any Ψ0 ∈ E , the Gross-Pitaevskii equation has a unique

global solution Ψ : R −→ E such that Ψ(0) = Ψ0.

Furthermore, the flow associated to (GP) is continuous and

EGL(Ψ(t)) = EGL(Ψ0) for all t ∈ R.

Theorem (J. Alhelou, 2021)

Assume that N ∈ {1, 2, 3}. For every Ψ0 ∈ E and every Φ0 ∈ H1(RN) there

exists a unique global solution (Ψ,Φ) of the (GC) system with initial values

(Ψ,Φ)(0) = (Ψ0,Φ0).

Moreover, the energy E (Ψ(t),Φ(t)) and the mass M(Φ(t)) are conserved by

the flow associated to (GC).
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Stationary solutions

Theorem

Let N > 2.

Any finite-energy solution of the Ginzburg-Landau equation in RN is constant.

Proof. Any solution ψ ∈ E is a critical point of EGL. Let ψσ(x) = ψ
(
x
σ

)
.

Then d
dσ |σ=1

(EGL(ψσ)) = 0 and this gives the Pohozaev identity

(N − 2)

∫
RN

|∇ψ|2 dx + N

∫
RN

V (|ψ|2) dx = 0

=⇒ ψ is constant.
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Stationary solutions for the (GC) system

We are looking for solutions of the (GC) system of the form

(Ψ,Φ)(t, x) =
(
ψ(x), e−iωt/δϕ(x)

)
.

Then (ψ,ϕ) satisfy

(Sω)

{
−∆ψ + 1

ε2 ( 1
ε2 |ϕ|2 + |ψ|2 − 1)ψ = 0

−∆ϕ+ 1
ε2 (q2|ψ|2 − ε2k2

M)ϕ = ω · ϕ

and are critical points of the action functional E (ψ,ϕ)− ωM(ϕ).

We are interested by ground states and we will consider the problem

minimize E (ψ,ϕ) for ψ ∈ E , ϕ ∈ H1(RN) s.t.

∫
RN

|ϕ|2 dx = m.
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For m > 0, we define

gmin(m) = inf

{
E (ψ,ϕ)

∣∣ ψ ∈ E , ϕ ∈ H1(RN),

∫
RN

|ϕ|2 dx = m

}
.

Recall that E (Ψ,Φ) =

∫
RN

|∇Ψ|2 +
1

2ε2
(|Ψ|2 − 1)2 +

1

ε2q2
|∇Φ|2 +

1

ε4
|Ψ|2|Φ|2 dx .

Proposition

Assume that N ∈ {1, 2, 3}.Then:

(i) gmin is non-decreasing and concave on (0,∞), and 0 6 gmin(m) 6 m
ε4 for

all m > 0.

(ii) There exists C > 0 such that gmin(m) 6 Cm
N

N+2 .

(iii) If N = 1 we have gmin(m) <
m

ε4
for any m > 0 and lim

m→0

gmin(m)

m
=

1

ε4
.

(iv) If N > 2, there exists m0(N) > 0 such that gmin(m) =
m

ε4
for any

m ∈ (0,m0(N)] and gmin(m) <
m

ε4
for m > m0(N).

Remark. We have m0(2) 6 0.658 and m0(3) 6 4.61.
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Theorem

Assume that gmin(m) < m
ε4 . Then:

i) There exist minimizers for gmin(m).

Moreover, all minimizing sequences are relatively compact (modulo

translations).

ii) If (ψ,ϕ) ∈ E × H1(RN) is a minimiser, there exists

γ ∈ [g ′min,r (m), g ′min,`(m)] such that

−∆ψ + F (|ψ|2)ψ + 1
ε4 |ϕ|2ψ = 0,

−∆ϕ+ q2

ε2 |ψ|2ϕ− ε2q2γϕ = 0 in RN .

iii) The functions ψ and φ are smooth on RN and after a phase shift, they are

real-valued. After translation, they are radial. The radial profile of ψ is

nondecreasing, and the radial profile of ϕ is nonincreasing.
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Graphs of ψGS and ϕGS in radial coordinates with mass m = 4π in dimension

N = 1 (left) N = 2 (center) and N = 3 (right).
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Stationary bubble-kink (1D)

In space dimension N = 1, the GP equation possesses some particular

stationary solution known as the kink: ψ0(x) = tanh
(

x
ε
√

2

)
.

Theorem

Assume that N = 1 and that m > 0. Then, there exists ω ∈ R and there is at

least one solution (ψ,ϕ) to Sω with ψ real-valued, odd and increasing from

−1 to +1 and ϕ real-valued, even and decreasing in R+.

Figure: Kink and bubble-kink of mass 4π.
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Stationary bubble-vortices (2D)

The Gross-Pitaevskii (GP) equation has some remarkable stationary solutions

in the plane called vortices (Hervé and Hervé, 1994). These are stationary

solutions which can be written in polar coordinates x = r cos θ, y = r sin θ in

the form Ψ(t, x) = ad(r)eidθ, where d ∈ Z∗ is the winding number.

The profile ad : R+ −→ [0, 1] solves the ODE

a′′d(r) +
1

r
a′d(r)− d2

r2
ad(r) =

1

ε2
ad(r)

(
a2
d(r)− 1

)
and increases from 0 at r = 0 to 1 for r −→∞.

These solutions have infinite energy. Indeed, if ψ(x) = ρ(x)eidθ, we have

|∇ψ|2 = |∇ρ|2 + d2

r2 ρ
2. Therefore, if ρ −→ 1 as |x | −→ ∞, we get∫

B(0,R)
|∇ψd |2 dx ∼

∫
B(0,R)

|∇ρ|2 dx + 2πd2 ln(R).
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A graphical representation of ad for 1 6 d 6 4 is as follows.
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Theorem (H. Brezis - F. Merle - T. Rivière, 1994)

Let ψ be any solution of (GL) in R2 having topological degree d at infinity.

Then
1

ε2

∫
R2

(
|ψ|2 − 1

)2
dx = 4πd2.

Theorem (P. Mironescu, 1996)

Let ψ be any solution of (GL) in R2 having topological degree 1 at infinity.

There exists x0 ∈ R2 such that ψ(x − x0) = a1(|x |)e iθ.

A similar result is unknown for solutions of degree d > 1 at infinity.
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We look for stationary solutions of (GC) under the form(
ψd(x), ϕd(x)

)
=
(
ad(r)eidθ, fd(r)

)
,

This yields to the system (in polar coordinates and with fd real-valued)

(SVBd ,ω)


a′′d +

1

r
a′d −

d2

r2
ad =

1

ε2
ad

(
a2
d − 1 +

f2d
ε2

)

f′′d +
1

r
f′d −

1

ε2
fd(q2a2

d − ε2k2
M − ε2ω) = 0.

with the boundary conditions

ad(0) = 0, ad(r) −→ 1 and fd(r) −→ 0 as r −→∞.

The mass constraint becomes∫
R2

ϕ2
d dx = 2π

∫ ∞
0

f2d rdr = m,

and ω depends on m and possibly on fd .
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We need to renormalize the energy in order to deal with bubble-vortex

solutions. We choose a cut-off function χ : [0,∞) −→ [0, 1] such that χ = 0

on [0, 1], χ is non-decreasing, C∞, and χ = 1 on [2,∞). We consider

Ed(ρ, ϕ) =

∫
R2

|∇ρ|2 +
d2

|x |2
(
ρ2(x)− χ2(|x |)

)
+

1

2ε2
(|ρ|2 − 1)2

+
1

ε2q2
|∇ϕ|2 +

1

ε4
|ρ|2|ϕ|2 dx .

We study the problem

minimize Ed(ρ, ϕ) for ρ ∈ E , φ ∈ H1(R2) s. t. M(φ) = m.
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Theorem

Let d ∈ N∗. Then:

i) For any m > 0 the above minimization problem admits at least a solution.

ii) If (ρ, ϕ) is a solution, then ρ and ϕ are smooth and radially symmetric,

and ϕ is real-valued after a phase shift. The radial profile of ρ is

non-decreasing, the radial profile of φ is non-increasing, and they solve the

system (SVBd ,ω) for some ω ∈ R.
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Graphs of bubble-vortices with mass m = 4π ad (blue) and ϕd (red) in radial

coordinate for d = 1 (left), d = 2 (center), d = 3 (right):
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Traveling waves for (GP)

Traveling waves are solutions of (GC) of the form

Ψ(x , t) = ψ(x1 − ct, x2, . . . , xN). The profile ψ satisfies

−ic ∂ψ
∂x1

= −∆ψ +
1

ε2
(|ψ|2 +

1

ε2
|φ|2 − 1)ψ

Traveling waves of speed c for (GP) are critical points of the functional

EGL(ψ)− cQ(ψ). These solutions have received a lot of attention

(Grant-Roberts ’74, Bethuel-Saut Ann IHP ’99, Bethuel-Orlandi-Smets JFA

’04, Bethuel-Gravejat-Saut CMP ’09, M. ’13, Chiron-M. ARMA ’17, ...).

Theorem (P. Gravejat, 2003)

The (GP) equation does not admit non-constant finite energy traveling waves

of speed |c| > vs =
√

2.

Here vs =
√

2 is the sound velocity at infinity for (GP).
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The momentum

The momentum (with respect to x1) is a functional Q such that

Q ′(u) = 2iux1 .

(a) If u ∈ H1(RN) or if u ∈ a + H1(RN) we have Q(u) =

∫
RN

〈iux1 , u〉 dx .

(b) If ψ ∈ E has a lifting ψ = ρe iθ, we have (formally)

Q(ψ) = −
∫
RN

ρ2θx1 dx = −
∫
RN

(ρ2 − 1)θx1 dx .

Using a functional analysis argument, we can define the momentum for any

function ψ ∈ E in such a way that this definition agrees with (a) and (b).

The momentum is conserved by the Gross-Pitaevskii equation.
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Let c ∈ (−vs , vs). We are looking for critical points of the functional

EGL − cQ.

Three methods have been used :

Minimize EGL when Q is kept fixed, c will be a Lagrange multiplier

=⇒ a family T1 of travelling waves (+ orbital stability).

Minimize E − Q when

∫
RN

|∇ψ|2 dx = const. =⇒ a family T2

Minimize E − cQ under a Pohozaev constraint =⇒ a family T3

We have T1 ⊂ T2 ⊂ T3.

Minimization of energy at fixed momentum.

Assume that N = 2, 3. For p ≥ 0, let

(2) E1,min(p) = inf{EGL(ψ)
∣∣ ψ ∈ E , Q(ψ) = p}.
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Theorem

We have:

(i) The function E1,min is concave, increasing on [0,∞), E1,min(p) ≤ vsq for

any q ≥ 0, the right derivative of Emin at 0 is vs , Emin(p) −→∞ and
E1,min(p)

p −→ 0 as p −→∞.

(ii) Let p0 = inf{p > 0 | E1,min(p) < vsp}. For any p > p0, all sequences

(ψn)n≥1 ⊂ E satisfying Q(ψn) −→ p and E (ψn) −→ Emin(p) are precompact

(modulo translations).

The set Sp = {ψ ∈ E | Q(ψ) = p, E (ψ) = E1,min(p)} is not empty and is

orbitally stable by the flow associated to (GP).

(iii) Any ψp ∈ Sp is a traveling wave for (GP) of speed

c(ψp) ∈ [d+E1,min(p), d−E1,min(p)], where we denote by d− and d+ the left

and right derivatives. We have c(ψp) −→ 0 as p −→∞.

(iv) We have p0 = 0 if N = 2 and p0 > 0 if N = 3.
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Energy-momentum diagram for (GP) in 2D

E

E

p

pE=v

p0

s

v

v

s

c 0

c v

Energy-momentum diagram for traveling waves to (GP) in dimension 2.
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Energy-momentum diagram for (GP) in 3D

0

E

p pp

E

E

v

v

min

min

c

c 0

vs
sE=v p

Energy-momentum diagram for traveling waves to (GP) in dimension 3.
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Traveling waves for (GC)

Traveling waves are solutions of (GC) of the form

Ψ(x , t) = ψ(x1 − ct, x2, . . . , xN), Φ(x , t) = ϕ̃(x1 − ct, x2, . . . , xN).

It is more interesting to search for ϕ̃ of the form ϕ̃(x) = e iδcx1ϕ(x); this

transform leads finally to Φ(x , t) = e iδc(x1−ct)ϕ(x1 − ct, x2, . . . , xN). We find

that ψ and φ must satisfy the system

(TW )


−2ic

∂ψ

∂x1
= −∆ψ +

1

ε2
(|ψ|2 +

1

ε2
|φ|2 − 1)ψ

(δ2c2 + k2)ϕ = −∆φ+
q2

ε2
|ψ|2ϕ.

The sound velocity at infinity associated to (GC) is vs =
√

2
ε .

Theorem

Any traveling wave (ψ,ϕ) ∈ E × H1(RN) of speed |c | > vs is constant.
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Q(ψ) and Q(ϕ) are not conserved quantities for (GC). Let

(3) P(ψ,ϕ) = Q(ψ) +
δ

ε2q2
Q(ϕ).

It is easily seen that P is (at least formally) a conserved quantity for the

system (GC). Therefore it is natural to seek for traveling waves for (GC)

by minimizing E while P is kept fixed.

Traveling waves of speed c for the system (CG) are critical points of the

functional E − cP.

Assume that (ψ,ϕ) is a critical point of E − cP, that is

d(E − cP)(ψ,ϕ) = 0. There is an interplay between the mass and the

momentum of ϕ: evaluating d(E − cP)(ψ,ϕ).(0, ix1ϕ) and integrating

by parts we get

Q(ϕ) =
cδ

2

∫
RN

|ϕ|2 dx .
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We may proceed similarly for the (GC) system as for the (GP) equation and

we consider the minimization problem

(Pp) minimize E (ψ,ϕ) for ψ ∈ E , ϕ ∈ H1(RN) satisfying P(ψ,ϕ) = p.

Let

Emin(p) = inf
{
E (ψ,ϕ)

∣∣ ψ ∈ E , ϕ ∈ H1(RN),P(ψ,ϕ) = p
}
.

Proposition

Assume that N ∈ {2, 3}. Then:

i) Emin is concave, positive and increasing on (0,∞), and Emin(p) −→∞,
Emin(p)

p −→ 0 as p −→∞.

ii) There is S1 > 0, explicitly depending on the physical parameters in (GC),

such that lim
p→0

Emin(p)

p
= S1 and Emin(p) 6 S1p for all p > 0.

If N = 2 we have Emin(p) < S1p for all p > 0.
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Let p0 = inf{p > 0 | Emin(p) < S1p}.

Theorem

Assume that N = 2 or N = 3, and p > 0 is such that Emin(p) < S1p.

Then there exist minimizers for the problem (Pp).

Moreover, any minimizing sequence (ψn, ϕn)n>1 ⊂ E × H1(RN) contains a

convergent subsequence (after translation).

Any minimizer ψ, φ of (Pp) solves the (TW) system for some

c ∈ [d+Emin(p), d−Emin(p)].

The functions ψ and ϕ are smooth in RN and axially symmetric about Ox1

(after translation).
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Minimization of the energy at fixed mass and momentum

We consider the problem

(Ep,m) minimize E (ψ,ϕ) when Q(ψ) = p and

∫
RN

|ϕ|2 dx = m.

If (ψ,ϕ) is a minimizer, the parameters c and λ = δ2c2 + k2
M appearing in

(TW) will be the corresponding Lagrange multipliers. For p ∈ R and m > 0,

let

Emin(p,m) = inf

{
E (ψ,ϕ)

∣∣∣ ψ ∈ E , ϕ ∈ H1(RN),
Q(ψ) = p, and∫
RN |ϕ|2 dx = m

}
.

Recall that

E1,min(q) = inf {EGL(ψ) | ψ ∈ E , Q(ψ) = q} .
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Proposition

The function Emin has the following properties:

(i) Emin(p,m) = Emin(−p,m) for any p ∈ R and any m > 0.

(ii) Emin(p,m) is finite and continuous on R× [0,∞), and for all p ∈ R and

m > 0 we have Emin(p, 0) = E1,min(|p|), Emin(0,m) = gmin(m), and

max(E1,min(|p|), gmin(m)) 6 Emin(p,m) 6 E1,min(|p|) + gmin(m).

(iii) Emin is sub-additive:

Emin(p1 + p2,m1 + m2) 6 Emin(p1,m1) + Emin(p2,m2) for all p1, p2,m1,m2.

(iv) For any fixed p0 the mapping m 7−→ Emin(p0,m) is concave and

increasing on [0,∞).

(v) If N > 3, for any pair (p0,m0) 6= (0, 0), m0 > 0, the mapping

t 7−→ Emin(tp0, tm0) is concave and increasing on [0,∞).
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(vi) Assume that p1, p2 ∈ R and m1,m2 > 0 are such that

Emin(p1,m1) + Emin(p2,m2) = Emin(p1 + p2,m1 + m2).

Then we have either

Emin(p1, 0) + Emin(p2,m1 + m2) = Emin(p1 + p2,m1 + m2), or

Emin(p1,m1 + m2) + Emin(p2, 0) = Emin(p1 + p2,m1 + m2).
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Theorem

Assume that N = 2 or N = 3 and the pair (p,m) satisfies the following strict

sub-additivity condition:

(4) E1,min(p′) + Emin(p − p′,m) > Emin(p,m) for any p′ ∈ R∗.

Then the minimization problem (Ep,m) admits solutions, and any minimizing

sequence has a convergent subsequence (after translations).

Let

S = {(p,m) ∈ (0,∞)2 | (p,m) satisfies (4) }.

We are able to show that S 6= ∅ (and in fact S is quite large).

We have checked numerically that some physically relevant pairs (p,m)

belong to S.

Question: Is it true that (p,m) ∈ S for all p > p0 and m > m0?
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Small mass, high momentum traveling wave for (GC) in 2D

Graphs of ψ (left) and of ϕ (right):
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Vă mulţumesc pentru atenţie !
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